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Abstract

Influences of large deformation (geometrical non-linear) and rotary inertia on wave propagation in a long, piezoelec-
tric cylindrically laminated shell in thermal environment is presented in this paper. Nonlinear dynamic governing equa-
tions of piezoelectric cylindrically laminated shells are derived by means of Hamilton’s principle. The wave propagation
modes are obtained by solving an eigenvalue problem. Numerical examples show that the characteristics of wave prop-
agation in piezoelectric cylindrically laminated shells are relates to the large deformation, rotary inertia and thermal envi-
ronment of the piezoelectric cylindrically laminated shells. The effect of large deformation, rotary inertia and thermal
load on wave propagation in the piezoelectric cylindrically laminated shells is discussed by comparing with the result
from the small deformation (geometrical linear shell theory). This method may be used to investigate wave propagation
in various laminated material, layers numbers and thickness of piezoelectric cylindrically laminated shells under large
deformation. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The characteristic of wave propagation in elastic media can be used to predict the size of damage in a
structure or used in the ultrasonic inspection techniques and structural health monitoring. There are many
investigations of wave propagation in cylinder shell in the past decades: The membrane shell model was put
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forth by Love (1944), in which the transverse forces, bending and twisting moments are negligible, such
model is suitable for thin shell structures in which only the normal and shear membrane forces acting in
the mid-surface of shell are considered. For shells of moderate thickness, Mirsky and Herrmann (1957) stud-
ied the shear effects in both axial and circumferential directions, and the rotary-inertia effects in the study of
axially symmetric waves in a cylindrical shell; Lin and Morgan (1956) developed the equations for axially
symmetric motions including both shear and rotary inertia effects for non-axially symmetric motion of shell
structures. Cooper and Naghdi (1957) presented a theory including shear and rotary inertia effects for non-
axially symmetric motion of shell structures. Mirsky (1964) studied an approximate theory for vibration of
orthotropic thick cylindrical shell in which the effect of transverse normal stress was retained.

The other hands, there are also have many researches about the large deformation (geometrical non-
linear) theory of shells. Donnell (1934) derived governing equations of large deformations cylindrical shells
based on some approximate hypothesis. Von Karman and Tsion (1939, 1941) studied the buckling and
postbuckling of thin cylindrical spherical shells by using large deformation theory of shells. Reissner
(1977) discussed small deflection (geometrical linear) theory of laminated shell considering the effect of nor-
mal direction strain. Wampner (1967) derived a theory for moderately large deflections of sandwich shell
with dissimilar facing.

In recent years, the use of piezoelectric materials in intelligent structures attracted extensive attentions.
Due to the intrinsic direct and converse piezoelectric effects, piezoelectric materials can be effectively used as
sensors or actuators for the active shape or vibration control of structures (Li and Lin, 2001). One of the
important applications of wave propagation in piezoelectric structures is the using of interdigital transducer
(IDT). IDT was first used to excite the surface wave devices in radar communication equipment as filters
and delay lines (Varadan and Varadan, 2000), so it is important to know the characteristic of wave prop-
agation in piezoelectric structures. Wave propagation and vibration in pure piezoelectric structures and
laminated elasitic structures have attracted considerable attention of many researchers (Wang et al.,
2002; Wang and Dai, 2004a,b; Dai and Wang, 2004, 2005). But the study of wave propagation in laminated
piezoelectric cylinder shells is only in recent years: Wang (2002); Wang (2003a,b) discussed wave propaga-
tion in piezoelectric coupled cylinder affected by transverse shear and rotary inertia with Cooper—Naghdi
shell theory. There are many investigations on the thermal load effect on piezoelectric cylindrical shell such
as the constitutive relationship of piezoelectric materials thinking of electro-thermo-elastic properties is
investigated by Tan and Tong (2002); A postbucking analysis is presented for a cross-ply laminated cylin-
drical shell with piezoelectric actuators subjected to the combined action of mechanical, electric and ther-
mal load by Shen (2002); Wang (2003a,b) presented an analytical solution for the axisymmetric
deformation of a finitely long and laminated cylindrical shell under pressuring loading and a uniform tem-
perature change. Most of these studies are based on geometrically linear theory or static problems. Because
many piezoelectric structures like lightweight space structures or thin-wall vessels are often used in thermal
environments, and induced to a large deformation of the structures under large external static or dynamic
loads, researches on the effects of large deformation on dynamic characteristics of structures are necessary
in order to design and control the structural systems effectively. Baumhauer and Tiersten (1973) developed
general piezoelectric nonlinear theory. Tzou and Bao (1993, 1997) presented a geometrical nonlinear theory
of a piezoelectric laminated shell. Authors (Huang and Shen, 2004; Huang et al., 2004; Shen et al., 2003,
2004; Yang and Shen, 2003) utilized analytical methods based on plate and shell theories to solve nonlinear
vibration and dynamic response of functionally graded plates in thermal environments and to study bend-
ing and vibration characteristics of damaged RC slabs strengthened with externally bonded CFRP sheets.
However, to the authors’ knowledge, there are a few investigations on the effects of large deformation on
wave propagation in piezoelectric cylindrically laminated shells in thermal environment.

This paper presents an analytical method to study the effects of large deformation and rotary inertia on
wave propagation in a long, piezoelectric cylindrically laminated shell with piezoelectric actuator layer and
sensor layer in thermal environment. Based on Hamilton’s principle, the nonlinear dynamic governing
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equations of piezoelectric cylindrically laminated shells are derived. The wave phase velocity is obtained by
solving an eigenvalue problem. Numerical examples show that the characteristics of wave propagation in
piezoelectric cylindrically laminated shells are relates to the large deformation of the piezoelectric cylindri-
cally laminated shells, rotary inertia and thermal environment of the piezoelectric cylindrically laminated
shells. The effects of large deformation, rotary inertia and thermal load on wave propagation in the piezo-
electric cylindrically laminated shells are discussed by comparing with the result from the small deformation
(geometrical linear shell theory). In order to prove the validity of our solution method and numerical results
further, wave propagation in piezoelectric cylindrically laminated shells under small deformation from the
present method omitting geometrical non-linear term in geometrical equations is nearly agreement with
some previous results based on a different analytical method in the literature (Wang, 2003a,b). Thus, this
method may be used to investigate wave propagation in various laminated material, layers numbers and
thickness of piezoelectric cylindrically laminated shells under large deformation and thermal environment.
Results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

2. Non-linear governing equation

A long, piezoelectric cylindrically laminated shell with (1) orthotropic elasticity host layer, (2) piezoelec-
tric actuator layer and (3) piezoelectric sensor layer is shown in Fig. 1. The curvilinear coordinate system
(x1,X2,x3) is shown in Fig. 1, where x| expresses the axial coordinate, x, expresses the circumferential coor-
dinate, and x3 expresses the radial coordinate. The surface defined by x; = 0 expresses the middle surface of
the laminated shells, and R is the radius of piezoelectric cylindrically laminated shells.

2.1. Constitutive relations
The material properties are assumed to be independent of temperature, and the stress and strain rela-

tions are linear. The constitutive relations of orthotropic piezoelectric materials in thermal environment
are written as (Tiersten, 1969)
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(2) The piezoelectric actuator layer (thickness h,)

(1) The orthotropic elasticity host layer (thickness hl)

(3) The piezoelectric sensor layer (thickness hg)

Fig. 1. Cylindrical shells coated with piezoelectric layers.
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where a;, S;, D;, E; (i=1,2,3,...,6) represent the stresses strains, electric displacements, electric fields,

respectively; ¢, e, g; denote the elastic constants, piezoelectric constants and dielectric constants, respec-
tively; 4, and p{i = 1,2, 3) are the thermal modulus and pyroelectric constants respectively; @ expresses tem-
perature change in the piezoelectric cylindrically laminated shells.

The relations between the electric fieldsE(i = 1,2, 3) and the electric potential ¢ in the curvilinear coor-
dinate system are defined by
U B )

_ _ 4
6x1’ R—‘r.X'; 6x2’

76)(3.

E, = = 3)

2

2.2. Non-linear geometrical relations

The non-linear strain of piezoelectric cylindrically laminated shells can be introduced by a large defor-
mation which is induced by mechanical and/or electric loads. According to the Love-Kirchhoff thin shell
assumptions, the nonlinear displacements Ufx1, x5, x3,7)(i = 1,2, 3) in the i th direction can be expressed as
(Tzou et al., 1993)

Ui (o1,x2,x3, 1) = uy (X1, %2, ) + 01 (x1,x1, ) - x3 (4a)
UZ(-xla-x27x37 t) = ”2(x17x27t) + 02()(17)6'1, t) © X3 (4b)
Us(x1,X2,x3,1) = uz(x1,x2, ), (4c)

where u(xy, x>, x3,2)(i = 1,2, 3) is the displacement component of a point on the mid-plane of the shell along
the x(i =1,2,3) axis; 0, and 6, represent the rotations of a transverse normal at x; = 0 around the x, and
X axis, respectively. The laminated shell is considered to be thin, so that the transverse normal strains S;
and shear strains Sy, S5 are negligible. Thus, the rotational angles 0; and 0, for the thin laminated shell are
defined as (Tzou and Bao, 1997)

6u3 [Z5] 16”3
0= =20, =—2—— 3. 5
‘ "R Rax ®)

In general, for a thin shell the in-plane displacements are much smaller than the transverse deflection.
Thus, the nonlinear effects due to the in-plane deformation are usually neglected (Palazatto and Dennis,
1992), only the nonlinear strains due to the large transverse deflection u3 are considered. Therefore, the non-
linear geometrical relations can be written as

S] S1 k]
Sz = S2 +X3 . kz (6)
S6 S6 k6

where sy, $;, S¢ are the membrane strains in the plane (x,—x,), and ki, k,, k¢ are the bending curvatures.
Subscripts 1, 2, 6 denote the two normal strains and a shear strain in the plane (x;—x;), respectively.
The nonlinear strains are written as functions of displacements u; (i = 1,2, 3) of the mid-plane as follows:
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2.3. Hamilton’s principle and nonlinear governing equations

The nonlinear dynamic equations of piezoelectric cylindrically laminated shells can be derived by utiliz-
ing Hamilton’s principle as follows:

f
5/ (T — M)dt =0, (8)
1
where
1 . .
T:/prjUjdV (8a)
v 2
is the kinetic energy,
1= [ hs.5)dv (80)

is the total potential energy, and

h={S}Y'[c]{S}/2 — {E}'[sHE}/2 — {E} [g] /2 — {E} ' [){S} (&)

is the electric enthalpy. In the above formula, p is the mass density; U; and U ; are the displacement and
velocity, respectively; and V' is the volume around piezoelectric cylindrically laminated shells.

Here, a piezoelectric cylindrically laminated shell is considered as a symmetrical laminated structure (the
thickness of two piezoelectric layers is identical, /i, = &3, or the thickness of two piezoelectric layers is much
less than the thickness of the elastic host layer, 4,, 3 < hy). Thus, it is reasonable that the middle surface of
the elastic host layer is taken as the neutral plane of the piezoelectric cylindrically laminated shells. Substi-
tuting Eq. (4) into Eq. (1) and integrating the stresses across the thickness of the piezoelectric cylindrically
laminated shells, give the membrane stresses and bending stresses as
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where N;, N> and N, are the membrane forces, M;, M, and M, are the internal moment, ¢/ represent the
stresses (subscripts i = 1, 2, 6 express the normal stress and shear stress in the plane (1, 2), and superscripts
j=1,...,3 express the elasticity layer, actuator layer and sensor layer, respective). The expressions of 4;, B;,
D, E (i=1,...,6)and C;, F; (i=1,...,3) are shown in Appendix A.

From Eq. 4, the inertia terms can be written as

[ ostsar = [ i+ 5y dxs = iy, (=12, (152)

/hpkijsdxa = /hpk(ii/ +x30,)xsdxs = 10;,  (j=1,2), (15b)
2 2

/h pUsdxs = /] piits dxs = p,hiis, (15¢)

/, pi U dos :/ pility +x30))x3 dvs = Jiy; (= 1,2), (15d)
_h J%

2

where p, = (Zzzl o) /h is defined as a weight average density for the piezoelectric laminated shells, / é,—
and Jii; are the rotary inertia terms as follows:

'%
pi (s 3, 0 3, P33 3, 2,3
I=J="—"—+=h+=hh,+>hih = hy +=hihs + = hihs . 15
J B 3<2+2h12+4h12 +3 3—|—2h13—|—4h13 (15e)

Utilizing the Hamilton’s equation (8) and considering the effects of piezoelectric layers, the non-linear
dynamic governing equations of piezoelectric cylindrically laminated shells in thermal environment are
given by

ON, 0N uy 1 %0,
Vi 9V _ 0 O 1
o Ran, P or TR (16)
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3. Dispersion characteristics

Substituting Egs. (9)-(14) into Egs. (16)—(18), yields
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Because the piezoelectric actuator layer and the piezoelectric sensor layer should, respectively, meet
Maxwell equation [VDdz = 0, we have
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Wave propagation modes in piezoelectric cylindrical laminated shells in thermal environment is de-
scribed by

up (x1,%2,1) = Ue®1=) cos nx,, (24a)
Uy (X1, %2, 1) = Vel <01~ sin nxy, (24b)
us(x1,%2, 1) = We1=) cos nx,, (24c¢)
@(x1,%2,1) = &1 cos nx;, (24d)
O(x1,x2,1) = Te““17) cos nxs, (24e)

where ¢ and ¢ are the wave number and wave phase velocity, respectively, and w = &c is the eigen-fre-
quency. Substituting Eq. (24) into Eqgs. (19)—(21) and Egs. (22) and (23), yields a set of homogeneous equa-
tions in terms of U, V, W, ¢, T as

app app apy aig daps

Az Ay Ay dy  dls

U
V
az| ax Az Ay 4ss w =0, (25)
aq1 Q42 Q43 Q44 445 ¢

T

asy dsy ds3  dsq  dss
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3 —a— Mode 3, small deformation in this article
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0.2 [ v ----%--- Mode 2, small deformation (Wang, 2003)
1 -4 Mode 3, small deformation (Wang, 2003)
0.0 |-
1 L 1 L 1 L 1 L 1 L 1
0.0 0.2 0.4 0.6 0.8 1.0
Ehi2r

Fig. 2. Comparison of wave characteristics in piezoelectric cylindrically shells composed of a piezoelectric layer and a elastic host layer
under small deformation from two different solution methods, where 4/, R = 1/30 and h, = 0.1h;, h3 =0
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where the expressions of a;i(i=1,...,5;j=1,...,5) are shown in Appendix B. The relationship between the
wave numbers £ and wave phase velocity c is determined by searching the condition for non-zero solution

of U V,W,p,T , i.e.

an  dip a3z aig as
ary Ay A3 x4 Ads
asy  dsy dszy Az dss
aq) A4 A4z  d44 A4
asy dsy dszy  dsq4  dss

(26)

According to any specific wave numbers &, the wave phase velocity ¢ can be determined from Eq. (26).
Using this method, wave characteristics curves piezoelectric cylindrical laminated shells under large defor-
mation and thermal environment for different response modes are obtained.
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Fig. 3. Wave characteristics of piezoelectric cylindrically laminated shells under large deformation, for the circumferential mode n = 0
(a), n=2(b) and n =13 (c).
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4. Numerical results and discussion

Numerical examples are shown in this section. The elastic host layer with the thickness /;_is taken as
aluminum to easily compare with a special example in the literature; The PZT-4 material is taken as the
outer piezoelectric actuator layer with the thickness, /,; The PVDF material is taken as the inner piezoelec-
tric sensor layer with the thickness, /5. All material properties are listed in Appendix C (Li and Lin, 2001;
Kadoli and Ganesan, 2004).

To easily investigate the effect of large deformations on wave propagation in piezoelectric cylindrically
laminated shells, the non-dimensional wave numbers of wave modes curves is taken as ¢4/2n and the non-

dimensional velocity is taken as ¢/c, (Wang, 2003a,b), where
hyhy+h2 sy /2
. C4114ph1 + C4214ph2 + Cé}l4ph3 - 6‘4214;9( : ? Dy 04314p x & j; - 27)
’ pihi + pyha + pshs '

In order to prove the validity of our solution method and numerical results further, wave propagation in
piezoelectric cylindrically laminated shells composed of a piezoelectric layer and a elastic host layer, under
small deformation from the present method omitting geometrical non-linear term in geometrical equations
and some previous results based on a different analytical method in the literature (Wang, 2003a,b) are
shown in Fig. 2. One can see that two results from two different solving methods are nearly agreement.

For i1/R = 1/30 and h, = hy = 0.1k, the wave propagation modes at n =0, 2, 3 are described in Fig. 3.
It is evidence that wave propagation in a long piezoelectric cylindrically laminated shell with large defor-
mation and rotary inertia, in thermal environment, appear in three different wave modes. For the second
and third modes, the non-dimensional phase velocities are two different constant values when the non-
dimensional wave number is larger than 0.2, but for the first mode, the non-dimensional phase velocity in-
creases non-linearly as the non-dimensional wave number increases for the circumferential mode n =0
which is shown in Fig. 3(a). Fig. 3(b), (c) and Fig. 4 shows that the circumferential modes have great influ-
ence on wave mode, especially for the third wave mode. The Fig. 4 shows that the non-dimensional phase
velocity increased with the circumferential mode increased at lower wave numbers, but with the wave num-
bers increased, the tendency of non-dimensional phase velocity is constant volume for the third wave mode;
for the first and second wave mode, the influence of circumferential mode is little.
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ehy 12z

Fig. 4. The third mode of wave characteristics under large deformation for the circumferential mode n =0, n=1, n =2, and n = 3.
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Fig. 5. Wave characteristics of piezoelectric cylindrically laminated shells under large deformation or small deformation, for the first
mode at n =0 (a) and n =1 (b), the second mode at n =0 (c), n =1 (d) and the third mode at n =0 (e) and n =1 (f).
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The effect of large deformation on wave propagation in piezoelectric cylindrically laminated shells, for
the first, second and third wave modes at » =0 and n = 1 are plotted in Fig. 5. Fig. 5(a) and (b) shows the
comparison of the wave phase velocity under large deformation (geometrical non-linear) with the wave
phase velocity under small deformation (geometrical linear) for the first mode at » =0 and n = 1. It is seen
that the phase velocity decreases dramatically within a very small range of wave numbers at first, and it
increase smoothly with higher value. The large deformation of piezoelectric cylindrically laminated shells
has only a little effect on the phase velocity at lower wave number near zero, but it has dramatic influence
as wave numbers increases, and the effect of large deformation on wave propagation in the piezoelectric
cylindrically laminated shells is dependent on the circumferential number 7 of the piezoelectric cylindrically
laminated shells. The wave phase velocity of the second mode for n = 0 and n = 1 are shown in Fig. 5(c) and
(d). It is seen that the wave phase velocity under larger deformation is evidently different from that under
small deformation at lower wave numbers, but the wave velocities for n = 1, under two different deforma-
tion conditions converge gradually two constant values as the wave number increases. Fig. 5(e) and (f) show
the wave phase velocity of the third mode for n = 0 and n = 1. It is seen from Fig. 5(e) that the phase veloc-
ity for n =0, under larger deformation appear in a constants as wave numbers increase, but the phase
velocity for n = 0, under small deformation decreases as wave numbers increase. It is seen from Fig. 5(f)
that the phase velocity for n =1, under larger deformation is lower than that under small deformation
when the wave number is less than 0.2, but the phase velocity for n = 1, under larger deformation is much
larger than that under small deformation when the wave number is larger than 0.2.

The effect of rotary inertia on wave propagation, for the first, second and third modes at n = 0, in pie-
zoelectric cylindrically laminated shells is described in Fig. 6. The result shows that the rotary inertia has
very little effect on wave propagation for the second and third modes, in the piezoelectric cylindrically lam-
inated shells. But as the wave number increases, the phase velocity considering rotary inertia for the first
mode is much lower than the phase velocity no considering rotary inertia.

Fig. 7 shows the effect of the thermal load on wave propagation for the first mode and third mode at
n =0 and n =1 in piezoelectric cylindrically laminated shells. It is seen that for n = 0, the effect of thermal
load on wave propagation in the piezoelectric cylindrically laminated shells is very little for the first mode;
But, for n =1, when the wave number is larger than 0.3, the magnitude of phase velocity considering ther-
mal loading is lower than that no considering thermal loading for the first mode. For the third mode, the
effect of thermal load is very little.
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Fig. 6. The effect of rotary inertia on wave characteristics of piezoelectric cylindrically laminated shells, at the circumferential mode
n=20.
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The effect of thermal load on wave characteristics of piezoelectric cylindrically laminated shells, for the first mode at n =0

(a) and n =1 (b), the third mode at n =0 (¢) and n =1 (d).

5. Conclusions

The main contribution in this paper is to describe the effects of large deformation, rotary inertia and
thermal load on wave propagation in a piezoelectric cylindrically laminated shell. Utilizing Hamilton’s prin-

ciple,

nonlinear dynamic governing equations of the piezoelectric cylindrically laminated shells are derived.

The wave propagation mode curves are obtained by solving an eigenvalue problem. From results carried
out some conclusions are obtained by

(1)

The effect of large deformation on wave propagation in piezoelectric cylindrically laminated shells is
dependent on the wave modes, wave number and circumferential modes. The large deformation has
little effect on the phase velocity at lower wave numbers, but it have evidence effect with the increasing
of wave numbers for the first and third wave modes. For the second wave mode, the deformation has
evidence effect at lower wave numbers, but it has little evidence on higher wave numbers. The circum-
ferential modes have great influence for the third wave mode at lower wave number.
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(2) Rotary inertia has very little effect on wave propagation, for the second and third wave modes, in pie-
zoelectric cylindrically laminated shells; as the wave number increases, the phase velocity considering
rotary inertia for the first mode is much lower than the phase velocity no considering rotary inertia.

(3) The effect of the thermal load on wave propagation in piezoelectric cylindrically laminated shells is
mainly dependent on the circumferential modes of piezoelectric cylindrically laminated shells. The
effect of thermal load on wave propagation in the piezoelectric cylindrically laminated shells for
the first mode at n = 0 is very little. But, for » = 1, when the wave number is larger than 0.3, the mag-
nitude of phase velocity considering thermal loading is lower than that no considering thermal load.
For the third wave mode, the effect of thermal load is little.

The solution method in the paper may be used as a useful reference to investigate wave propagation in
piezoelectric cylindrically laminated shells under large deformation and rotary inertia, in thermal environ-
ment, for various laminated materials, the layers numbers and thickness of piezoelectric laminated shells.
The aim of comprehending the characteristic of wave propagation in piezoelectric cylindrically laminated
shells under large deformation and rotary inertia is used to predict the wave response in the higher frequen-
cies range so that the smaller size of damage in this piezoelectric laminated structures can be detected with
good resolution. The results carried out can be used in the ultrasonic inspection techniques and structural
health monitoring.
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Appendix A

_ .l 2 3 _ 1 2 3
A = c33ph1 + C33ph2 + C33Ph3, Ay, = ‘713ph1 + clSph2 + Cl3ph3a

1 1 1 1
§C§3p(h§ + hihy) — jcgzp(hg +hihy), As= chzp(hg + hiha) — QCfsp(hg + hih3),

A5 = e§3ph2 + 633[7}13, A6 = —/léhl - /lihz — /1;;13, Bl = C}3ph1 + Cﬁphz —+ C%3ph3,
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Bz = cilphl + C%lphz + C%lphg,

1 1 1 1
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B5 = eglphz =+ eglph3, B6 = —i?hl — i%/’lz — /ﬁh3, C1 = CAlt4ph1 + Ci4ph2 + Ci4ph3,

1
5 Cap (B3 + hih3),  Cs = ejs,h + e ha,
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1 1 1 1
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1 3 %317 3 3 2, 3. 2 3 3 2 3,
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1 s 3 3 sy 3 3
Dy = 12013ph3 3”(h§+§h1h§+zhfh2) T(h3+2h h2+4h hs),
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Appendix B
2 G 2 22 G
ay = —A¢ *F” + (P11 + poha + p3h3)Eic”, 6112* lf”Jr f”Jr* fnJrR ién,

A A C 1 (&
a3 = ;21'5 + 4318 +—§i£n2 + 2R—§i5n2 —Efsczl} ayy = —As& _R_§n27 ays = Agié,
B cC, EF
<1+‘+1+R§>ién,
B By, E, E c, F 1
azzz—(—2+—f‘+ =t “) 7= (Co 24 T DE (i o+ i) —

R R R
B, E, By 2C, 2F, E;s By E)N 5 I ,,
+ | = + = |n" +—ncc,

)" ( B R i

= RTrRTRTR

Bs C; E Bs E
ay = — <5+ e )lén azs=—<fé+1§>n7

rF E F B 1
ay = —D\Ei— (—1+—1+R—;>i5n2 - Flié +1_3€302l



K. Dong, X. Wang | International Journal of Solids and Structures 43 (2006) 1710-1726 1725

D, Di _F\ .F\., (E:» Es\ B BN\ 2 .,
__ 2T o), (B2 2 e ) s
2 (R+R2+ R Rz)én Rir) T e R) TR

Dy, B3\ 4 D4 2F, | E; 2F2 2o (B2, Ba) o
6133:—(7—E>5 — D¢ — 2t e Tt e ¢ - wta)n

E 1
Ri nt — R§ + (p1h + poha + p3h3)52c2 — 16402 + Féznzcz,
F E F B
asys = —Ds & — R—;ifnz — (IT; + ZR—§> ién® — ﬁii,
o E B e’
ass = —De& — Ri n RG; 41 = _e§3ph2 - %hznz’
e e e el
a427—h25 +2 L (hyhy + 5 )5m+ X by Eni +2 P (hyhy + h5)éni,

1 e,

Qus = 7§e§3p(h1h2 + 1)+ 31”h25 o (h hy + h2)éni +ﬁ(h hy + h2)2En?,
2 3 e?Sp 2

agg = gg,gphzf +g11ph2R2, 45 = p3ha,asy = —ey,h3 — R hsn”,

3 3 3

dsy; = ph3é + — (h h3 + hz)él’ll +—ph3f + — 2 2

2 2 (hyhsy + h2)éni,

1 3 3 ?
as; = 2e33p(h h;+h)£l+ 2 p i +—(h hy + 1) éni + 15f”(h hy + h2)én?,

2
n
asq = gigphzfz + gflphsl? ,ass = piha.

Appendix C

Aluminum: p; = 2.8 x 10> kg/m?, ¢!, = ¢}, = ¢}, = 105 GPa,cl, = ¢, = 51 GPa, Coefficient of thermal
expansion o' =2.55x107°/°C PZT-4: p, =7.5x 10°kg/m?, ¢}, = ¢, = 132 GPa,c}, = 71 GPa,c}, =
73 GPa, c3; = 115 GPa, ¢}, = 26 GPa; Piezoelectric properties (k/mz): el = —4.1,e3;, = 14.1, e} = 10.5;
Dielectric constant ((;S/m) g3, =5.841 x 107° ,g33 =7.124 x 107°, Coefficient of thermal expansion
@ =0k, =12x10"°/°C, Pyroelectrlc constant p;=0. 25 x 107* PVDF p3=18x10° kg/m’, ¢}, =
3.61 GPa,c}, = 1.61 GPa,c}, = 1.42 GPa c22 = 3.13 GPa, c33 = 1.63 GPa,c}, = 0.69 GPa;  Piezoelectric
properties (k/m?): e}, = 32.075 x 107, e}, = —21.19 x 107, &}, = —15.93 x 10~*; Dielectric constant (¢/
m): g, =53.985x 107"% g3, = 59.295 x 107>, Coefficient of thermal expansmn o0 =3, =
1.2 x 107*/°C, Pyroelectric constant p3 = —4 x 107>,
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